In Silico Prediction of Blood Brain Barrier Permeability: An Artificial Neural Network Model

نویسندگان

  • Prabha Garg
  • Jitender Verma
چکیده

This paper has two objectives: first to develop an in silico model for the prediction of blood brain barrier permeability of new chemical entities and second to find the role of active transport specific to the P-glycoprotein (P-gp) substrate probability in blood brain barrier permeability. An Artificial Neural Network (ANN) model has been developed to predict the ratios of the steady-state concentrations of drugs in the brain to those in the blood (logBB) from their molecular structural parameters. Seven descriptors including P-gp substrate probability have been used for model development. The developed model is able to capture a relationship between P-gp and logBB. The predictive ability of the ANN model has also been compared with earlier computational models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Pervious Concrete Permeability and Compressive Strength Using Artificial Neural Networks

Pervious concrete is a concrete mixture prepared from cement, aggregates, water, little or no fines, and in some cases admixtures. The hydrological property of pervious concrete is the primary reason for its reappearance in construction. Much research has been conducted on plain concrete, but little attention has been paid to porous concrete, particularly to the analytical prediction modeling o...

متن کامل

Support vector regression for prediction of gas reservoirs permeability

Reservoir permeability is a critical parameter for characterization of the hydrocarbon reservoirs. In fact, determination of permeability is a crucial task in reserve estimation, production and development. Traditional methods for permeability prediction are well log and core data analysis which are very expensive and time-consuming. Well log data is an alternative approach for prediction of pe...

متن کامل

An Artificial Neural Network Model for Prediction of the Operational Parameters of Centrifugal Compressors: An Alternative Comparison Method for Regression

Nowadays, centrifugal compressors are commonly used in the oil and gas industry, particularly in the energy transmission facilities just like a gas pipeline stations. Therefore, these machines with different operational circumstances and thermodynamic characteristics are to be exploited according to the operational necessities. Generally, the most important operational parameters of a gas pipel...

متن کامل

Prediction of Cardiovascular Diseases Using an Optimized Artificial Neural Network

Introduction:  It is of utmost importance to predict cardiovascular diseases correctly. Therefore, it is necessary to utilize those models with a minimum error rate and maximum reliability. This study aimed to combine an artificial neural network with the genetic algorithm to assess patients with myocardial infarction and congestive heart failure.   Materials & Methods: This study utilized a m...

متن کامل

In-silico prediction of Cellular Responses to Polymeric Biomaterials from Their Molecular Descriptors

In this work quantitative structure activity relationship (QSAR) methodology was applied for modeling and prediction of cellular response to polymers that have been designed for tissue engineering. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regressions (MLR) and artificial neural network (ANN) methods. The root m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 46 1  شماره 

صفحات  -

تاریخ انتشار 2006